Fractions

Fractions

When a whole is divided into two equal parts it is shared in half $\left(\frac{1}{2}\right)$.

MUST BE equal parts. (the same size)

We use fractions every day to share things equally. Write five more examples.

	There are eight in Tom's family. His mum cut the pizza into eight equal pieces.	
1. Cut a sandwich in half for lunch.	$\mathbf{2 .}$	Sarah's mum cut her birthday cake into four equal pieces! Yummy!
3.	$\mathbf{4 .}$	
$\mathbf{5 .}$.	$\mathbf{6 .}$	

Use the fraction wall to answer the questions.

1 unit				
$\frac{1}{2}$			$\frac{1}{2}$	
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	

1. How many halves are in 1 unit?
2. How many quarters are in 1 unit?
3. How many quarters are in one half?

Here we have one unit. Can you divide it into halves first? Now divide it into quarters. How do we write one half, one quarter?

Fractions

Which shapes have been divided into quarters? Tick the boxes.
1.

6.

2.

3.

8.

4.

9.

5. \square

10.

Challenge

If Mrs. O Sullivan ordered 2 pizza's from domino's for her party and if everybody had $1 / 4$ except for Mr. O' Keeffe who was greedy and ate 2 quarters how many people were at the party?

Fractions

Revision: So when one whole unit is broken up into 2 equal parts we call them halves.

$1 / 2$ means 1 part out of 2 equal parts.
$\frac{2}{2}$ means 2 parts out of 2 equal parts which is the
same as one whole

When one whole unit is broken up into 4 equal parts we call them quarters.

$1 / 4$ means 1 part out of 4 equal parts.
$\frac{4}{4}$ means 4 parts out of 4 equal parts which is
the same as one whole.

Fractions $\frac{1}{8}$

When we divide a shape into eight equal pieces each part is called an eighth or $\frac{1}{8}$.

$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

A

1. What fraction is shaded?

Example: 2 shaded parts out of 8 equal parts is $\frac{2}{8}$
a) $\frac{-}{4}=\frac{1}{2}$

The picture shows us $1 / 2$ of the pizza is the same as $\frac{2}{4}$
(a)

(b)

(C)

(d)

(e)

2. Colour the fraction shown.
(a)

(b)

$\frac{2}{8}$

(c)

(d)

(e)

If you have completed this work well done!!!!

*Remember when the number below the line (denominator) gets bigger, the size of the part gets smaller.

Eg.
$\frac{1}{8}$ is smaller than $\frac{1}{4}$

Fractions

3. Use the fraction wall to answer the following questions.
(a) $\frac{\square}{4}=\frac{1}{2}$
(b) $\overline{8}=\frac{1}{4}$
(c) $\frac{\square}{4}=1$ unit
(d) $\frac{3}{4}=\frac{\square}{8}$
(e) $\frac{4}{4}=\frac{\square}{8}$
(f) $\bar{\square}=\frac{1}{2}$
(g) $\frac{\square}{2}=1$ unit
(h) $\frac{2}{4}=\frac{\square}{8}$
(i) $\overline{\overline{8}}=1$ unit
(j) $\frac{2}{8}=\frac{1}{\square}$
(k) $\frac{3}{4}=\frac{\square}{8}$
(I) $\frac{2}{2}=\frac{\square}{4}$

4. Who ate the most?

(b)

Tony ate $\frac{7}{8}$	
Sarah ate $\frac{1}{2}$	
Lucy ate $\frac{3}{4}$	

(c)

George ate $\frac{5}{8}$
Alan ate $\frac{3}{4}$
Joan ate $\frac{2}{8}$

(d)

Maria ate $\frac{2}{4}$	
Sinead ate $\frac{8}{8}$	
Ciara ate $\frac{4}{8}$	

Units and fractions

$$
1 \text { unit }+\frac{1}{4} \text { or }
$$

 $+$ (1) is written as $1 \frac{1}{4}$

This is one whole bar and 1 piece out 8. We write this as $1 \frac{1}{8}$.

1. What fraction is shown in each picture?

2. Place these fractions in order, starting with the smallest.
(a) $1 \frac{1}{2}, \frac{2}{4}, 2 \frac{1}{8}, 3,2 \frac{7}{8}, 1 \frac{3}{4}, \frac{1}{8}, 1 \frac{5}{8}, \frac{3}{8}$
(b) $2 \frac{2}{4}, 1,3 \frac{5}{8}, 1 \frac{6}{8}, \frac{2}{8}, 2 \frac{1}{4}, 3 \frac{2}{4}$

We call these mixed numbers. A mixed number is a whole number (one full unit) and another fraction.

Word Problems

1. If Mr. Mcgovern ate $\frac{1}{2}$ a pizza, what fraction would be left?
2. If Mr. O' Connor ate $\frac{2}{4}$ of his sandwich what fraction would he have left.
3. Ms. O^{\prime} keeffe ate $\frac{1}{2}$ of the chocolate bar and her dad ate $\frac{1}{4}$ of the bar. How much was left for Mr. O' Keeffe?

Fractions

Your aim: To know less than $\frac{1}{2}$, Equal to $\frac{1}{2}$, Greater than $a \frac{1}{2}$.

Halves, quarters and eighths.
Which is greater?

1. 1 or $\frac{1}{2}$
2. $\frac{1}{4}$ or $\frac{1}{8}$
3. $\frac{1}{2}$ or $\frac{3}{4}$
4. $\frac{5}{8}$ or $\frac{1}{2}$
5. $\frac{7}{8}$ or $\frac{3}{4}$
6. $\frac{1}{4}$ or $\frac{3}{8}$

7. Write a fraction that has the same value as:
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) $\frac{3}{4}$
(d) 1 unit
(e) $\frac{2}{4}$
(f) $\frac{6}{8}$

Fractions

Introducing $\frac{1^{\prime}}{5}$ s and $\frac{1}{10}$'s
A Halves, fifths, tenths.

1. Which is greater?
(a) $\frac{1}{5}$ or $\frac{1}{10}$
(b) $\frac{4}{5}$ or $\frac{1}{2}$
(c) $\frac{7}{10}$ or $\frac{3}{5}$
(d) $\frac{1}{2}$ or $\frac{6}{10}$
(e) 1 unit or $\frac{9}{10}$
(f) $\frac{4}{5}$ or $\frac{8}{10}$

1 unit				
$\frac{1}{2}$			$\frac{1}{2}$	
$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$
10 $\frac{1}{10}$ 10	(1)10 10 10	(10	(1)\| $\frac{1}{10}$	$\frac{1}{10}$ $\frac{1}{10}$

2. Write a fraction that has the same value as:
(a) $\frac{1}{2}$
(b) $\frac{3}{5}$
(c) $\frac{4}{10}$
(d) $\frac{1}{5}$
(e) $\frac{5}{10}$
(f) $\frac{6}{10}$
3. Mr. Mcgowan invited 4 teachers over to his house for tea. How many equal parts should the cake be cut into to share it fairly? (Don't forget Mr. Mcgowan- he loves cake)
4. If Mr. Mcgowan intended to give everybody at the party 2 slices how many equal parts should he cut it into?
5. If you were one of Mr. Mcgowan's guests and you loved cake which would you prefer? 1 piece of cake when the cake is cut into 5 equal pieces or 2 pieces of cake when the cake is cut into 10 equal pieces? (don't forget to use your fraction wall)
6. 2 cakes were baked for a party for 20 people. How many equal parts should the cake be cut into.

Fractions

Introducing $\frac{1^{\prime}}{3} s, \frac{1}{6}^{\prime} s, \frac{1}{9}^{\prime} s, \frac{1}{12}^{\prime} s$ (thirds, sixths, ninth's, twelfth's)
A Thirds, sixths, ninths, twelfths.

1. Which is greater?
(a) $\frac{2}{3}$ or $\frac{4}{9}$
(b) $\frac{1}{6}$ or $\frac{1}{3}$
(c) $\frac{11}{12}$ or 1 unit
(d) $\frac{7}{9}$ or $\frac{4}{6}$
(e) $\frac{3}{6}$ or $\frac{5}{12}$
(f) $\frac{7}{9}$ or $\frac{2}{3}$

$\frac{1}{6}$	$\frac{1}{6}$
$\frac{1}{6}$	$\frac{1}{6}$
$\frac{1}{6}$	$\frac{1}{6}$

$	$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$		
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$				
$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$			
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$				
12	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$			
12	12	1	12	12		

3. Write a fraction that has the same value as:
(a) $\frac{2}{3}$
(b) $\frac{3}{6}$
(c) $\frac{3}{9}$
(d) $\frac{8}{12}$
(e) 1 unit
(f) $\frac{6}{9}$

Make your own fraction wall!!!
Fraction Wall: $1^{\text {st }}$ row thirds, $2^{\text {nd }}$ row sixths, $3^{\text {rd }}$ row ninths, $4^{\text {th }}$ row twelfths.
\square
C Put these fractions in order. Start with the smallest.

1. $\frac{2}{3}, 1, \frac{1}{3}$
2. $\frac{5}{6}, \frac{1}{6}, \frac{3}{6}$
3. $\frac{7}{12}, \frac{11}{12}, \frac{8}{12}$
4. $\frac{1}{3}, \frac{1}{6}, \frac{5}{6}$
5. $\frac{2}{9}, \frac{2}{3}, \frac{5}{9}$
6. $\frac{11}{12}, \frac{7}{12}, \frac{3}{6}$

Fractions

Your aim:

- to know the numerator and the denominator
- to investigate the relationship between fractions using a fraction wall.

7

Let's investigate: fraction wall.

1. Find a fraction that has the same value as:
(a) $\frac{1}{3}$
(b) $\frac{1}{2}$
(c) $\frac{1}{4}$
(d) $\frac{1}{5}$
(e) $\frac{2}{3}$
(f) $\frac{3}{4}$
(g) $\frac{2}{5}$
(h) $\frac{5}{6}$

2. Find a fraction with a numerator of 1 that is smaller than:
(a) $\frac{1}{6}$
(b) $\frac{1}{10}$
(c) $\frac{1}{8}$
(d) $\frac{1}{5}$

$\frac{2}{8}$
3. Find two fractions with a denominator of 12 that are smaller than $\frac{7}{12}$.
4. Find two fractions with a denominator of 5 that are greater than $\frac{1}{5}$.
5. Fill in the blanks.
(a) $\frac{5}{6}=\frac{\square}{12}$
(b) $\frac{6}{8}=\frac{\square}{4}$
(c) $\frac{3}{5}=\square$
(d) $\frac{2}{3}=\frac{\square}{9}$
(e) $\frac{1}{2}=\frac{\square}{10}$
(f) $\frac{1}{4}=\frac{3}{\square}$
(g) $\frac{3}{5}=\frac{6}{\square}$
(h) $\frac{8}{12}=\frac{4}{\square}$
(i) $\frac{4}{6}=\stackrel{2}{\square}$
(j) $\frac{6}{8}=\square$

All but one.

1. Use the five rectangles below and colour:

A All but one fifth blue
B All but one sixth green
C All but one eighth red

Example

All but one ninth of this shape is blue.

D All but one twelfth yellow

A

B

C

D

